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Microwave Diversity Imaging of Perfectly

Conducting Objects in the

Near-Field Region
Tah-FIsiung Chu, Member, IEEE, and Ding-Bing Lin

Absfract —In this paper, analytical and numerical stndies of mi-
crowave dkersity imaging of continuous and discrete conducting objects
in the near-field region are presented. Analytical results show that the
image of the scattering object can be reconstructed via Fourier inversion

of the data acquired from the recorded scattered field using angular and
frequency diversity techniques. Furthermore, different feature informa-

tion of the scattering object can be obtained using a polarization
diversity technique. Various scattering arrangements are studied and

compared on the basis of the reconstructed image quality and practical
considerations. Numerical results show that the described frequency,

angular, and polarization diversity techniques in the backward scatter-
ing arrangement can be a cost-effective approach in near-field mi-
crowave imaging systems.

I. INTRODUCTION

M ICROWAVE imaging is cataloged as an inverse scat-
tering problem [1], one in which the physical proper-

ties, such as geometrical shape or material characteristics, of
the unknown scattering object are deduced from the mea-
sured scattered field data. Approaches to reconstruct mi-
crowave images of the scattering objects are usually based on
the theory of direct scattering with certain approximations.

For the case of a perfectly conducting object, the physical
optics approximation is usually adopted to relate the geomet-
rical shape of the conducting object to its scattered field. It
is known that, under the physical optics approximation,
Bojarski’s identity forms the basis of monostatic microwave
imaging of a perfectly conducting object in the far-field
region [2], [3]. However, when the test object is located in the
near-field region of the receiving aperture, the paraxial ap-
proximations of far-field and monostatic imaging geometry
cannot be made.

In general, good resolution is the main design objective of
an imaging system. The size of the available recording aper-
ture conventionally restricts the resolution capability. The
approach followed to improve image resolution of a mi-
crowave imaging system involves extending the effective area
of the physical recording aperture by means of various syn-
thetic aperture techniques. The use of frequency and angular
diversity techniques has been applied and has been found
experimentally to yield high-resolution microwave images of
conducting objects [4], [5].
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In this paper, studies of microwave imaging of perfectly
conducting objects in the near-field region employing fre-
quency, angular, and polarization diversities are presented.
Analytical results show that the image can be reconstructed
via Fourier inversion of the acquired Fourier space data
based on a theorem that will be developed in Section II. This
theorem says that by illuminating conducting objects with a
plane wave, two-dimensional Fourier transformation of the
measured scattered field on a planar receiving array will give
values of the three-dimensional Fourier transformation of
the scattering function distributed on a spherical surface in
the Fourier space.

According to the formulation of image reconstruction to
be developed in Section II, the Fourier space data can be
acquired by combining angular and frequency diversities, and
information on the various features of the scattering object
can be obtained by using the polarization diversity technique.
In general, the angular diversity technique is time consum-
ing, since it involves recording the scattered field from all
directions. Results of this paper will demonstrate that only a
limited number of views are required to reconstruct the
image by using the frequency diversity technique. With theo-
retical and numerical results, the frequency diversity tech-
nique is shown to be the most suitable candidate for imaging
perfectly conducting objects in the near-field region.

This paper consists of four sections. In Section II, formula-
tions of scattered field and image reconstruction of continu-
ous and discrete scattering objects, are presented, along with
a discussion of the use of microwave diversity techniques to
acquire the Fourier space data. Numerical results corre-
sponding to various scattering arrangements are given in
Section III. Lastly, in Section IV, the findings of this paper
are summarized.

II. THEORETICAL DEVELOPMENT

In this section, we will relate the scattering properties to
the microwave image reconstruction algorithm for continu-
ous and discrete conducting objects under the illumination of
a plane wave in the forward- and backward-scattering near-
field arrangements shown in Fig. l(a) and (b) respectively.

A. Continuous Scattering Object

Considering a perfectly conducting object illuminated by a
plane wave with exp ( j~t ) time dependence, the scattered
field Es(r) over a planar array located at z = d (forward-
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Fig. 1. (a) Forward and (b) backward scattering geometries.

scattering arrangement) or z = – d (backward-scattering ar-
rangement) in the near-field region of the scattering object is
given as

ES(X, y, z = t d) = – jtiPOj/8(lr – r’1) “J,(r’) d2r’ (1)

where

()~(lr–r’1)= f+: G(lr–r’1)
o

(2)

is the dyadic Green’s function in free space, ~ is the unit
dyadic, G(lr – r’1) is the Green’s function in free space, J,(r’)
is the induced surface current density, kO = w/c, and d2r’ is
a surface element.

When the dimension of the object is much larger than the
wavelength of illumination, or the physical optics approxima-
tion [6], the kernel of the integral in (1) becomes

~(lr - r’1) “~,(r’) = fG(lr - r’1). [2 fi(r’) x HL(rf)]

+ ~G(lr– r’1). [2ii(r’)x Hi(r’)] (3)
o

where

Hi(r’) = Hoe-jk’’”r’dh (4)

is the incident plane wave with wave vector k” = k. h k, and

the unit vector dh is perpendicular to k(l.
Assume that the geometry of the illuminated conducting

object and the polarization state of the incident wave are
appropriate, as, for example, in the case considered in the
numerical simulation studies in Section III with a TM polar-
ization wave incident on a cylindrical object. The first term
in the right side of (3) is much more dominant than the
second term, i.e.,

~G(lr - r’1). [2 fi(r’) X Hi(r’)]

>> ~G(lr– r’1). [2j?( r’) X Hi(r’)] . (5)

4s1

Thus the dyadic Green’s function ~(lr – /1) in (2) can then
be reduced to the scalar Green’s function G(lr – r’1) and (1)
becomes

ES(x, y,z=+d, kO)

= -jq.@o~/2fi(r’)X ilhe-’’OG(\r\r- l)d2r2r’ (6)
s,,,

where the surface integral is over the object illuminated
region S,ll.

Given that the polarization state of each receiving element
is in the same direction O, the recorded scattered field
becomes a scalar form as

~s(X, y, Z= +d, ko)

=b. Es(x, y,z=td, ko)

= -j@woHo///0()e)J-,”G(lrlr-l)d3r3r (’7)

where

O(r’) =jl”(2fi(r’)X dh)f3(S(r’)) (8)

is defined as the scattering function, which is related to the
polarization states of the transmitting and receiving antennas
and the illuminated surface of the conducting object, and
8(. ) is a one-dimensional Dirac delta function with its argu-
ment defined as

(=O as r’ G S,ll
S(r’)

# O elsewhere
(9)

to reduce the volume integral in (7) to the surface integral in
(6).

By expressing the wave vector k. of the incident plane
wave as k. = kXo2 + kYoj + kzo.f and using the plane wave
expansion of the Green’s function [7]

G(lr – r’1) = ~

“//

–.i—e–~k.l +d-z’le–Jk.(~-x’) +~y(Y-Y’)l dkx &y (10)
2kZ

where

(7) becomes

US(X, y, Z= +d, ko)

1

JJ
–@poHo.— e–]kd

4T2 2kZ

‘(ii/
o(rt)eJ[(k, -kr{))x’+(ky –k,())y’ +( * k.–k:o)z’]dsr, )

.e–.i(k,x+kyY)dkxdky. (12)

A two-dimensional Fourier transform of the resulting expres-
sion of U’(X, y, z = f d, kt~) in the x and y directions will
yield

@(kX, ky, Z= td>k(])

– (IJpoH()
——

2kz
e –.ik,d

6(kX –kXtJ, kY –kyc), &kz –kZo) (13a)
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or

O(kz, kY, k,)

~ 2(kZ + ho) ~ ~ j(k=+k,o)d——
— q.LoHo

ti’(kX+k Xo, k,+kyo, Z= f~, J%o). (13b)

In deriving (13), the two-dimensional Fourier transforma-
tion of U’(X, y, z = + d) in the x and y directions is defined
as

ti(kX, kY, z= id)

——J-f (Us x, y, z = + d)ej(k’’+~~y)a!xdy (14)

whereas the three-dimensional Fourier transformation of the
scattering function O(r) of the scattering conducting object
is defined as

~(k) =/~/0 (r)eJk”rd3r (15)

where k = kX2 + k‘ ~ + kz.i? is the wave vector in Fourier
space.

After applying (11), the arguments of ~(k) in (13b) are
related by

(kX +kXo)2+(kY + kyo)2+(kZ + kzo)2= k;. (16)

Expression (16) defines a spherical surface in the Fourier
space O(ko) with radius k. and its center given by the wave
vector k. of the incident plane wave. Therefore, (13b) shows
that proper normalization of the two-dimensional Fourier
transformation results of the scattered field recorded by a
planar array located at z = d (forward-scattering arrange-
ment) or z = – d (backward-scattering arrangement) yields a
hemispherical surface centered at ( – kXO, – k ~[), –- kzo) with
radius k. in the three-dimensional Fourier space O(k). Note
that (13) is similar to the formulation of the diffraction
tomography of a dielectric object satisfying the Born approxi-
mation [7] except for the definition of the scatt~ring function
and the normalization factor relating ~’ and O(k).

The microwave image of the continuous scattering object,
defined by the scattering function O(r) given in (8), can then
be reconstructed through Fourier inversion of the recorded
scattered field U’(X, y, z = ~ d, kt~) by varying the incident
wave vector k{), the observation angle of the receiving aper-
ture (frequency and angular diversity), and the polarization
states ~ and/or d~ -(polarization diversity) to acquire the
Fourier space data O(k). Details of the microwave diversity
techniques to acquire the Fourier space data will be dis-
cussed in subsection C.

B. Discrete Scattering Object

Assume the discrete scatterers are isotropic scattering
points and there is no mutual coupling between the scatter-
ers. The scalar scattered field ~’(r) over a planar array
located at z = d (forward-scattering arrangement) or z = – d
(backward-scattering arrangement) in the near-field region
of the scattering object can be expressed as

13s(x, y, z= +d,k~~)= ~a(r/)Ei(r/)G(lr -r/l) (17)

where

E’(r;) = Eoe-jk’)”r~ (18)

is the incident plane wave and u(r:) is the reflectivity of the
point scatterer at r:.

By defining the scattering function as

O(r) = ~u(r~)8(r– r/) (19)
i

where 8( r —ri ) is a three-dimensional Dirac delta function,
the summation in (17) becomes the volume integral given as

US(X, Y, Z= ~d, ko)

=ES(x, y,z=+d, ko)

= Eo/~/ O(r’)e-Jkfl”’’G(lr – r’1) d3r’. (20)

Note that (20) is similar to (7) except for the scaling factor
outside the integral. Therefore, by substituting (10) into (20)
and performing two-dimensional Fourier transformation of
the resulting expression of U’(X, y, z = + d, ko) in the x and
y directions, an expression similar to (13) can be obtained:

@(kX, kY, z=id, ko)

– jEo
e –jkZd—

2kZ

.d(kX – kXo, kY – kyo, ~ k= – kzo) (21a)

or

O(k, ky, kz )

+ 2(kz + ‘zCI) ~ +~(k, +k.o)d
——

– jbo

.tiS(kX+kro, ky+k,o, Z= +d, ko). (21b)

Therefore, microwave images of discrete scattering ob-
jects, defined by the scattering function O(r) given in (19),
which in turn is related to the reflectivity and the distribution
of each point scatterer, can be reconstructed from the
recorded scattered field US(X, y, z = + d, ko) by varying the
incident wave vector k. and the observation angle of the
receiving aperture (frequency -and angular diversity) to ac-
quire the Fourier space data O(k).

In the next subsection, studies of image reconstruction for
continuous and discrete scattering objects using microwave
diversity techniques to acquire the Fourier space data based
on the formulation derived above will be given for the
two-dimensional case for simplicity.

C. Microwaue Diuersity Techniques

In a two-dimensional arrangement the scattering object is
assumed to be infinitely long in the y direction and the
receiving aperture is a linear array in the x direction located
at z = d or z = – d (i.e., forward or backward scattering

arrangement). For a plane wave illumination with fixed wave
vSctor kt~ = kf)2, only circular shaped Fourier components
O(kX, k, ), as illustrated in Fig. 2(a) and (b), are accessible
from the recorded scattered field. Note that when the linear
array is placed in the forward-scattering arrangement (i.e.,
z = d), the locus represented by (16) and kz ranging from
– k,] to O becomes a semicircle denoted by the solid line
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Fig. 2. Fourier slices acquired in (a) forward and (b) backward scatter-

ing arrangements with single-frequency (wave number k O) Plmre wave

illumination.

shown in Fig. 2(a). In Fig. 2(b), the semicircle denoted by the
solid line, with k: ranging from – 2k[J to – ko, is obtained
by placing the linear array in the backward-scattering ar-
rangement (i.e., z = – d).

In order to reconstruct the image of the scattering func-
tion with high resolution, a large portion of Fourier space
data is required, i.e., additional degrees of freedom to ac-
quire the Fourier space data are necessary. Note that in the
above derivation there are three variables that can be ex-
ploited to acquire the Fourier space data: i.e., IrfJ, o, and dh.
In the following, we will discuss three microwave diversity
measurement techniques using these three degrees of free-
dom.

1)

2)

Angular Diuersity Technique: By rotating the scattering
object over a full 360° in small steps, the circular
shaped Fourier components 0( kX, kz) will rotate in
like manner. These semicircles will then trace a disk of

radius tiko centered at the origin for the case of the
forward-scattering arrangement as shown in Fig. 3(a),

or an annular ring of inner radius fikcj and outer
radius 2k{l for the case of the backward-scattering
arrangement, as shown in Fig. 3(b). However, because
of the double coverage of the Fourier domain gener-
ated by the semicircles illu~trated in Fig. 3(a) and (b),
the Fouier components O(kX, kz) corresponding to

either the positive or the negative kX should be dis-
carded to eliminate redundancy.

Frequency Diuersity Technique: By linearly stepping the
frequency of the incident wave from ~1 to ~2 (wave-

(a)

Kx
4

2 K:

\
\

K=

I
(b)

Fig. 3. Fourier space data acquired in (a) forward and (b) backwdrd

scattering arrangements using angular diversity technique for 360° view-
ing angles.

3)

It

number varying from k, to kz), the radius of two
semicircular slices denoted by the solid lines in Fig.
2(a) and (b) extend to a crescent-shaped section and a
fan-shaped section in the Fourier space respectively, as
shown in Fig. 4(a) and (b). Therefore, in the back-
ward-scattering arrangement, a total of four views are
sufficient to cover most of the Fourier space, while
more views are seen to be needed for the forward-
scattering case, as illustrated in Fig. 5(a) and (b).
Polarization Diuersity: By changing the polarization
states of the transmitting and receiving antennas, dif-
ferent Fourier space data are accessible, and the re-
constructed image for each polarization state pair gives
information on the different features of the scattering
object.

is suite obvious that the forward-scattering arrangement
is a more suitable imaging geometry for the single-frequency
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Fig. 4. Fourier space data acquired in (a) forward and (b) backward

scattering arrangements using frequency diversity technique with k ~
stepped from k ~ to k ~.

illumination case, since it can fill a larger portion of the
Fourier space than that in the backward-scattering arrange-
ment. However, the angular diversity technique is time con-
suming in practice and a band-pass version of Fourier space
data would yield a similar image of the scattering function
given by either (8), describing the shape of a continuous
scattering object, or (19), representing the distribution of a
discrete scattering object. Therefore, comparing Fig. 3(a)
with Fig. 5(b), it is interesting to note that the backward-
scattering arrangement using frequency diversity with four
views is practically superior to the forward-scattering ar-
rangement using only the angular diversity technique with
small steps over 360° viewing angles, provided the frequency
range is wide enough. This implies that the described fre-

quency, angular, and polarization diversity techniques in the
backward-scattering arrangement can be a cost-effective ap-
proach in near-field microwave imaging systems.

In the next section, numerical results of the described
two-dimensional near-field microwave imaging system will be
presented to illustrate the theoretical development given
above.

III. NUMERICAL RESULTS

Numerical examples of continuous and discrete scattering
objects are given in this section for two cases, (a) mr.rltiview
single-frequency forward\ backward scattering arrangements
and (b) a single-view\ four-view multifrequency backward-

Kz

K=

(b)

Fig. 5. Fourier space data acquired in (a) forward and (b) backward
scattering arrangements using frequency and angular diversity tech-
niques (kO stepped from k ~ to k ~, and four orthogonal views).

scattering arrangement, to simulate the theoretical develop-
ment discussed in Section II. Simulation results of a multi-
frequency forward-scattering arrangement are not presented,
because the synthesized Fourier space practically covers a
very small region.

A. Continuous Scattering Object

A perfectly conducting cylinder with radius a =15 cm
assumed to be infinitely long in the y direction is used as the
test object. A 384-cm-long linear receiving array is located at
z = 30 cm (forward-scattering arrangement) and z = – 30 cm

(backward-scattering arrangement).
Assume the electric field of the incident plane wave is

polarized in the y direction (i.e., TM polarization) and the
polarization state of each receiving antenna is in the y
direction. Therefore the second term in (3) becomes zero to
satisfy the assumption given in (5).

In the simulation study of case (a) (i.e., multiview, single-
frequency forward\ backward scattering arrangements), the
illuminating frequency is 10 GHz, and the scattered field is
recorded by a linear receiving array with 256 equally spaced
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(a) (b)

Fig. 6. (a) Fourier space data of the test conducting cylinder object
acquired in the forward scattering arrangement using angular diversity

technique and (b) its reconstructed image.

no

(a) (b)

Fig. 7. (a) Fourier space data of the test conducting cylinder object

acquired in the backward scattering arrangement using angular diversity
technique and (b) its reconstructed image.

points and a total of 128 equally spaced views over 36fY’. The
simulated two-dimensional Fourier space data @kX, k=) are
then reformed in a 128X 128 rectangular format, as shown in
Fig. 6(a), through the four-nearest-neighbors interpolation
algorithm [8] in order to perform two-dimensional inverse
FFT.

The reconstructed image from the multiview, single-
frequeney forward-scattering arrangement is shown in Fig.
6(b). The circular ring image shown in Fig. 6(b) represents
the shape of the cylinder and is in good agreement with the
object geometry. Since the Fourier space data obtained in
the backward-scattering arrangement in Fig. 7(a) cover a
very thin annular pattern, the reconstructed image shown in
Fig. 7(b) bears a much poorer resemblance to the test object
than the result in Fig. 6(b).

In case (b), involving the single-view/four-view multifre-
quency backward-scattering arrangement, the scattered field
along the linear receiving array is sampled at 256 equally
spaced points with frequency stepped from 5 to 10 GHz in 32
steps. The range of ka is 15.7–31.4 radians; i.e., the simula-’
tion is in the physical optics regime. The simulation results of
Fourier space data shown in Fig, 8(a) and (b) correspond to
the single view and four orthogonal views respectively. The
reconstructed image from the single-view case, as shown in
Fig. 9(a), gives a partial circular ring image. This is because

the object dimension is much larger than the wavelength

used; according to the physical optics approximation the
induced surface current is primarily on the surface of the

(a) (b)

Fig. 8. Fourier space data of the test conducting cylinder object ac-
quired in the backward scattering arrangement using (a) single view and

(b) four orthogonal views with the frequency diversity technique
(frequency stepped from 5 GHz to 10 GHz in 32 steps).

(a) (b)

Fig. 9. Reconstructed image of the test conducting cylinder object

obtained from’ the Fourier space data given in (a) Fig. 8(a) for single
view and in (b) Fig. 8(b) for four orthogonal views.
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Fig. 10. Simulated line scatterers at (– 15, O) cm, (– 8, 10) cm,

(O, – 12) cm, (13, – 8) cm, and (15, 14) cm respectively.

object illuminated region. Therefore, a four-orthogonal-view
arrangement is required to reconstruct an image represent-
ing the shape of the scattering object, as shown in Fig. 9(b).
The image quality is seen to be not as good as that given in

Fig. 6(b) because the low-frequency portion is lacking and
the Fourier space coverage is smaller than that in Fig. 6(a).
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(a) (b)

(a) Fourier space data of the test discrete object acquired in the forward scattering arrangement using angular
diversity technique and (b) its reconstructed image.

Fig. 12

(a)

(a) Fourier space data of the test discrete

(b)

object acquired in the backward scattering arrangement using angular
diversity technique and (b) its reconstructed image.

However, the multifrequency backward-scattering arrange-
ment provides a cost-effective scheme to record the scattered
field compared with the mr.tltiview, single-frequency forward-
scattering arrangement.

B. Discrete Scattering Object

A two-dimensional discrete conducting object consisting of
five line scatterers with equal reflectivity, shown in Fig. 10, is
used as the test discrete scattering object for the same two
cases given in the first numerical example except that the
linear receiving array is 96 cm long in this numerical study,

In the simulation study of case (a) (i.e., the multiview,
single-frequency forward/backward scattering arrange-
ments), the illuminating frequency is 10 GHz, and the scat-
tered field is recorded by a linear receiving array with 64
equally spaced points and a total of 128 equally spaced views
over 360°. Results of the Fourier space data and recon-
structed images of the test discrete object are shown in Figs.
11 and 12 for the cases of forward- and backward-scattering
arrangements respectively. The reconstructed image shown
in Fig. 12(b) carries much poorer resolution about the test
object than the result given in Fig. 1l(b), because the Fourier
space data obtained in the backward-scattering arrangement
shown in Fig. 12(a) cover a very thin annular region. All the
reconstructed images shown in Figs. 1l(b) and 12(b) are in

good agreement with the object geometry except for the
different resolutions about the test object.

In case (b), involving the single-view, multifrequency back-
ward-scattering arrangement, the scattered field is recorded
by a linear receiving array at 64 equally spaced points with
frequency stepped from 5 to 10 GHz in 32 steps. Fig. 13
shows the results of the Fourier space data of the test object
and the reconstructed image. The reconstructed image is
seen to be in good agreement with the object geometry. Note
that in the study of this case the scattered field is recorded
using frequency diversity only. A four-view arrangement is
not necessary because no shadow region exists for the dis-
crete scattering object.

IV. CONCLUSIONS

In this study, the microwave diversity imaging of perfectly
conducting objects in the near-field region has been shown
to be able to retrieve the shape of continuous scattering
objects and tlie distribution of discrete scattering objects. It
has been shown that the backward-scattering arrangement
using the frequency diversity technique to acquire the Fourier
space data is the most efficient and flexible approach for
imaging a conducting object in the near-field region. In the
case of a continuous scattering object, the reconstructed
image from the backward-scattering arrangement with a sin-
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(a) (b)

Fig. 13. (a) Fourier space data of the test discrete object acquired in the backward scattering arrangement using the
frequency diversity technique (frequency stepped from 5 GHz to 10 GHz in 32 steps) with single view and (b) its

reconstructed image.

gle view yields shape information corresponding to the illu- [81
minated surface of the scattering object. Therefore, a total of
four orthogonal views using frequency diversity in the back- ~91
ward arrangement are reqriired to reconstruct an image
representing the complete shape of the scattering object. In
Section III results of various numerical examples illustrate
the findings of the developed near-field microwave imaging
theorem of perfectly conducting objects.

In this paper, the microwave imaging principle has been
analvzed under the assum~tions of (5) and the ~hvsical., . .
optics approximation. It is known that the physical optics
approximation is inadequate for scattering problems when
the dominant scattering mechanism derives from edge
diffraction, multiple reflection, creeping waves or traveling
waves. These scattering mechanisms are, however, important
contributions to the scattered field of a conducting object of
complex shape [9]. Therefore an exact imaging theorem will ,
be needed for a more general near-field microwave imaging
system for conducting objects of complex shape.
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